Stability and Robustness Analysis Tools for Marine Robot Localization and Mapping Applications
نویسندگان
چکیده
The aim of this analysis is to explore the fundamental stability issues of a robotic vehicle carrying out localization, mapping, and feedback control in a perturbation-filled environment. Motivated by the application of an ocean vehicle performing an autonomous ship hull inspection, a planar vehicle model performs localization using point features from a given map. Cases in which the agent must update the map are also considered. The stability of the marine robot controller and estimator duo is investigated using a pair of theorems requiring boundedness and convergence of the transition matrix Euclidean norm. These theorems yield a stability test for the feedback controller. Perturbations are then considered using a theorem on the convergence on the perturbed system transition matrix, yielding a robustness test for the estimator. Together, these tests form a set of tools which can be used in planning and evaluating the robustness of marine vehicle survey trajectories, which is demonstrated through experiment. An augmented A* kinodynamic path-planning algorithm is then implemented to search the control input space for the globally robustness-optimal survey trajectory. Thesis Supervisor: Franz Hover Title: Assistant Professor of Mechanical and Ocean Engineering
منابع مشابه
Map-merging in Multi-robot Simultaneous Localization and Mapping Process Using Two Heterogeneous Ground Robots
In this article, a fast and reliable map-merging algorithm is proposed to produce a global two dimensional map of an indoor environment in a multi-robot simultaneous localization and mapping (SLAM) process. In SLAM process, to find its way in this environment, a robot should be able to determine its position relative to a map formed from its observations. To solve this complex problem, simultan...
متن کاملStable Gait Planning and Robustness Analysis of a Biped Robot with One Degree of Underactuation
In this paper, stability analysis of walking gaits and robustness analysis are developed for a five-link and four-actuator biped robot. Stability conditions are derived by studying unactuated dynamics and using the Poincaré map associated with periodic walking gaits. A stable gait is designed by an optimization process satisfying physical constraints and stability conditions. Also, considering...
متن کاملEffects of Moving Landmark’s Speed on Multi-Robot Simultaneous Localization and Mapping in Dynamic Environments
Even when simultaneous localization and mapping (SLAM) solutions have been broadly developed, the vast majority of them relate to a single robot performing measurements in static environments. Researches show that the performance of SLAM algorithms deteriorates under dynamic environments. In this paper, a multi-robot simultaneous localization and mapping (MR-SLAM) system is implemented within a...
متن کاملComparison of Two Quantitative Susceptibility Mapping Measurement Methods Used For Anatomical Localization of the Iron-Incorporated Deep Brain Nuclei
Introduction Quantitative susceptibility mapping (QSM) is a new contrast mechanism in magnetic resonance imaging (MRI). The images produced by the QSM enable researchers and clinicians to easily localize specific structures of the brain, such as deep brain nuclei. These nuclei are targets in many clinical applications and therefore their easy localization is a must. In this study, we aimed to i...
متن کاملNew Adaptive UKF Algorithm to Improve the Accuracy of SLAM
SLAM (Simultaneous Localization and Mapping) is a fundamental problem when an autonomous mobile robot explores an unknown environment by constructing/updating the environment map and localizing itself in this built map. The all-important problem of SLAM is revisited in this paper and a solution based on Adaptive Unscented Kalman Filter (AUKF) is presented. We will explain the detailed algorithm...
متن کامل